Central Limit Theorem by moments

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Moments in a Markov-chain Central Limit Theorem

Let (Xi)1i=0 be a V -uniformly ergodic Markov chain on a general state space, and let be its stationary distribution. For g : X! R, de ne Wk(g) := k 1=2 k 1 X i=0 g(Xi) (g) : It is shown that if jgj V 1=n for a positive integer n, then ExWk(g) n converges to the n-th moment of a normal random variable with expectation 0 and variance 2 g := (g ) (g) + 1 X j=1 Z g(x)Exg(Xj) (g) 2 : This extends t...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Central Limit Theorem Forthe

The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater (1984). The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of diierential operators, introduced and analyze...

متن کامل

A Martingale Central Limit Theorem

We present a proof of a martingale central limit theorem (Theorem 2) due to McLeish (1974). Then, an application to Markov chains is given.

متن کامل

Spectral methods – central limit theorem

Now we recall the statement of the central limit theorem (CLT) and give a proof in the case of IID (independent identically distributed) random variables. The weak law of large numbers says that if Xn is a sequence of IID random variables with E[Xn] = 0, then writing Sn = ∑n−1 k=0 Xk, the time averages 1 n Sn converge to 0 in probability, or equivalently (since the limit is a constant), in dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2007

ISSN: 0167-7152

DOI: 10.1016/j.spl.2007.04.003